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Abstract. We describe the development of the tangent linear (TL) and adjoint models of the MPAS-CO2 transport model,

which is a global online chemical transport model developed upon the non-hydrostatic Model for Prediction Across Scales-

Atmosphere (MPAS-A). The primary goal is to make the model system a valuable research tool for investigating atmospheric

carbon transport and inverse modeling. First, we develop the TL code, encompassing all CO2 transport processes within

the MPAS-CO2 forward model. Then, we construct the adjoint model using a combined strategy involving re-calculation5

and storage of the essential meteorological variables needed for CO2 transport. This strategy allows the adjoint model to

undertake long-period integration with moderate memory demands. To ensure accuracy, the TL and adjoint models undergo

vigorous verifications through a series of standard tests. The adjoint model, through backward-in-time integration, calculates

the sensitivity of atmospheric CO2 observations to surface CO2 fluxes and the initial atmospheric CO2 mixing ratio. To

demonstrate the utility of the newly-developed adjoint model, we conduct simulations for two types of atmospheric CO210

observations: tower-based in situ CO2 mixing ratio and satellite-derived column-averaged (XCO2 ). A comparison between

the sensitivity to surface flux calculated by the MPAS-CO2 adjoint model with its counterpart from Carbon Tracker-Lagrange

(CT-L) reveals spatial agreement but notable magnitude differences. These differences, particularly evident for XCO2 , likely

arise from differences in vertical mixing between the two systems. Moreover, this comparison highlights the substantial loss of

information in the atmospheric CO2 observations due to CT-L’s simulation length and spatial domain limitations. Furthermore,15

the adjoint sensitivity analysis demonstrates that the sensitivities to both surface flux and initial CO2 conditions spread out

throughout the entire northern hemisphere within a month. MPAS-CO2 forward, TL, and adjoint models stand out for their

calculation efficiency and variable-resolution capability, making them competitive in computational cost. In conclusion, the

successful development of the MPAS-CO2 TL and adjoint models, and their integration into the MPAS-CO2 system, establish

the possibility of using MPAS’s unique features in atmospheric CO2 transport sensitivity studies and in inverse modeling with20

advanced methods such as variational data assimilation.
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1 Introduction

Estimating CO2 fluxes through inverse modeling, using atmospheric chemical transport models and atmospheric CO2 mea-

surements, is an important approach for understanding the global carbon budget. Beyond providing seasonal flux estimates

that are useful for understanding the magnitude and phase of photosynthesis and respiration, it provides annual mean flux25

estimates that shed light on the key processes driving the response to climate change. When these annual mean CO2 estimates

are adjusted to account for lateral fluxes (e.g., due to rivers, or the transport of crops and wood products), it gives an inde-

pendent means of validating carbon stock change estimates from the terrestrial biogeochemical models and inventories (Byrne

et al., 2023). However, atmospheric transport models, which play a key role in inverse modeling, remain a significant source

of uncertainty on both regional and global scales (Hurtt et al., 2022).30

Two classes of chemical transport models – online and offline – are commonly used for simulating atmospheric CO2 trans-

port. Offline models, such as TM5 (Krol et al., 2005; Meirink et al., 2006), PCTM (Kawa et al., 2004; Baker et al., 2006) and

GEOS-Chem (Kopacz et al., 2009), solve the tracer continuity equation using winds and vertical mixing fields computed from

an independent run of a meteorological model or from a meteorological analysis. Online models, such as WRF-Chem (Grell35

et al., 2011), OLAM (Walko and Avissar, 2008; Schuh et al., 2021), and MPAS-CO2 (Skamarock et al., 2012; Zheng et al.,

2021), integrate chemistry, transport and meteorology simultaneously. Although offline models typically have lower compu-

tational costs, the separation of chemistry/transport from meteorology leads to a loss of information regarding atmospheric

processes occurring at time scales shorter than the meteorological model output frequency (Grell et al., 2005). In comparison,

online models, owing to their simultaneous integration of meteorology and chemistry, have the potential to improve transport40

accuracy, particularly for vertical transport of chemistry. Recent advances in computer power and parallelization have greatly

reduced the computational cost of online transport models, making them increasingly more accessible and practical for atmo-

spheric CO2 research.

A number of studies have demonstrated that transport model accuracy can be improved by increasing the model’s horizontal45

resolution (Feng et al., 2016; Agusti-Panareda et al., 2019). Because global high-resolution CO2 transport simulations are

computationally demanding, limited-area models (regional models) are often used instead (Pillai et al., 2012; Lauvaux et al.,

2012; Zheng et al., 2018). However, regional models introduce the lateral boundary condition, posing challenges for CO2

inverse modeling (Zheng et al., 2019; Rayner et al., 2019). MPAS-CO2 (Zheng et al., 2021) addresses this limitation by being

an online global transport model based on the compressible non-hydrostatic Model for Prediction Across Scales-Atmosphere50

(MPAS-A) (Skamarock et al., 2012). Like OLAM (Schuh et al., 2021), MPAS-CO2 uses a global variable-resolution mesh to

facilitate local grid refinement for high-resolution simulations in specific regions without incurring prohibitively high compu-

tational costs and avoiding the disadvantages of lateral boundary conditions.
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The primary objective of this study is to develop the tangent linear (TL) and adjoint (AD) models associated with the global55

online transport model MPAS-CO2 (Zheng et al., 2021). Adjoint model techniques have been widely used in both meteoro-

logical and atmospheric greenhouse gas research (Errico, 1997; Courtier et al., 1994; Giering et al., 2006; Meirink et al., 2008;

Henze et al., 2007; Tian and Zou, 2021), and play critical roles in variational data assimilation and sensitivity analyses (Baker

et al., 2006; Zheng et al., 2018; Tian and Zou, 2020).

60

The subsequent sections of this paper provide an overview of the MPAS-CO2 forward model developed in Zheng et al.

(2021) (Section 2), and the development and verification of the TL and AD models based on the forward model (Sections 3

& 4). The utility of the newly developed AD model is demonstrated with adjoint sensitivity analyses in Section 5. Finally, a

summary and conclusion are given in Section 6.

2 MPAS-CO2 forward model65

Zheng et al. (2021) documented the development of MPAS-CO2, verifying its mass conservation and assessing its accuracy.

Hereafter, we refer to MPAS-CO2 as the forward model, whose TL and AD model counterparts we develop in the present

paper. A brief description of the forward model is provided here; see Zheng et al. (2021) for comprehensive details. The

forward model characterizes CO2 transport through the continuity equation:

∂(ρ̃ qco2)
∂t

=−(∇ · ρ̃ qco2 V)ζ + Fbl + Fcu (1)70

where qco2 is CO2 dry air mixing ratio, ρ̃ = ρd/(∂ζ/∂z), ρd is dry air density, ζ is the vertical coordinate, z is geometric

height, t is time, and V = (u,v,w) is the velocity vector (u, v, and w are the zonal, meridional, and vertical wind components,

respectively). The meteorological variables, such as wind velocity and dry air density, are updated simultaneously with CO2 by

the model’s dynamical core and physics parameterizations. The left-hand side (LHS) of Eq. (1) is the total CO2 time tendency

(∂(ρ̃qco2)/∂t), and the first, second, and third terms on the right-hand side (RHS) represent the contributions from advection,75

vertical mixing by the planetary boundary layer (PBL) parameterization, and convective transport, respectively. Advection of

CO2 in MPAS-CO2 is handled in the model’s dynamical core and can be expressed as Eq. (2), where the first two terms on the

RHS represent the horizontal advection, and the third term represents the vertical advection:

(∇ · ρ̃ qco2 V)ζ =
[∂(ρ̃uqco2)

∂x
+

∂(ρ̃vqco2)
∂y

]
ζ
+

∂(ρ̃wqco2)
∂ζ

(2)

CO2 vertical mixing in the PBL is implemented based on the YSU PBL scheme (Hong et al., 2006) and can be expressed as:80

Fbl =
∂qco2

∂t
=

∂

∂z

[
Kh(

∂qco2

∂z
)− (w′q′co2

)h (
z

h
)3

]
(3)
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where z is the vertical distance to surface, h is boundary layer top height, and Kh is vertical eddy diffusivity. Convective

transport of CO2 is implemented based on the Kain-Fristch convection scheme (Kain, 2004) and it can be expressed as Eq. (4)

Fcu =
∂qco2

∂t
=

(Mu + Md)
ρA

∂qco2

∂z
+

Mud

M
(qu

co2
− qco2) +

Mdd

M
(qd

co2
− qco2) (4)85

where qco2 , qu
co2

, and qd
co2

are the CO2 mixing ratio in the environment, updraft, and downdraft, respectively, Mu and Md are

the updraft and downdraft mass, respectively, ρ is the environment air density, A is the horizontal area of a cell, M = ρAδz is

the mass of environmental air in a grid box, and Mud and Mdd are the detrainment from the updraft and downdraft, respectively.

3 Development of the MPAS-CO2 TL model90

The CO2 advective transport process described in Eq. (2) is implemented by two two different numerical schemes in the

forward model: (1) a monotonic scheme with hyperviscosity (β) set to 0.25; and (2) a non-monotonic scheme with β = 1.0

(Skamarock et al., 2012). The monotonicity in the first scheme is achieved by applying a flux limiter in the last step of the

third-order Runge-Kutta solver (Wang et al., 2009; Skamarock and Gassmann, 2011). While the second scheme is linear in

CO2, the first scheme is nonlinear due to the application of the flux limiter. Because both the YSU PBL and Kain-Fristch95

convection schemes are linear in CO2, using the linear advective scheme makes the forward model a linear model in CO2. In

this paper, we develop the TL and adjoint models based on the linear version of the MPAS-CO2 forward model, which can be

symbolically expressed as:

xt =M(x0,e), (5)

where x0 and xt are the CO2 dry air mixing ratio at the initial and forecast time (t), respectively. M( ) represents the MPAS-100

CO2 forward model and e represents a timeseries of CO2 fluxes between times 0 and t. While both x0 and xt are 3-dimensional

vectors, e is 2-dimensional, indicating that CO2 flux is applied only to the model’s surface cells. Eq.(5) indicates that CO2

mixing ratio at a forecast time (xt) is determined by the CO2 mixing ratio at an initial time (x0) and the CO2 flux (e) through

the forward model.

105

The TL and adjoint models are designed to calculate the sensitivity of Xt with respect to x0 and e. This is achieved

by introducing the TL and adjoint variables of their counterparts in the forward model (Giles and Pierce, 2000). While the

introduction of the TL and adjoint variables for the initial CO2 mixing ratio (x0) is straightforward, it is a bit more complex

for the CO2 fluxes (e). This complexity arises from the fact that CO2 flux, at each surface cell of the model, varies with time

throughout the model’s entire simulation period. Depending on the underlying biosphere model and emission inventory used,110

CO2 flux varies at a certain temporal frequency, ranging from hourly to monthly. Although it is possible to introduce TL and
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adjoint variables for CO2 flux at the flux’s temporal frequency, it is neither practical nor necessary to do so. Instead, a common

approach is to introduce flux scaling factors (Henze et al., 2007; Zheng et al., 2018) as follows:

e = S(k)ẽ, (6)

where ẽ are time-variant CO2 fluxes, typically from a process model or inventory, and S(k) is a generic scaling function. Eq.115

(6) means that at each surface cell, the magnitude of the CO2 flux (ẽ) is adjusted using a flux scaling factor before it is used

to modify the cell’s CO2 mixing ratio. We implemented Eq. (6) in an emission driver of the forward model in a way that

allows the flexibility of choosing the temporal frequency of the flux scaling factor. For instance, for a 24-hour forward model

simulation forced by 3-hourly CO2 flux, one can choose to have eight scaling factors at each surface cell (one for each of

the eight 3-hour segments), or just one scaling factor for the entire time period. All the MPAS-CO2 model runs used in the120

remainder of this paper are conducted using a single scaling factor for each surface cell that is repeated for each flux timestep

in the entire simulation period. In this case, the scaling function S(k) in Eq. (6) is a function of a scaling vector k that has the

same dimension as the model’s surface mesh. The introduction of the flux scaling factors turns CO2 flux from active variables

to parameters, and the impacts of their variation on CO2 mixing ratio are calculated through their corresponding scaling factors

k. Accordingly, the MPAS-CO2 forward model can be symbolically expressed as125

xt =M(x0,k) (7)

Eq. (7) shows that for a given set of CO2 flux (ẽ), the forecast time CO2 mixing ratio (xt) is a function of the initial time CO2

mixing ratio (x0) and the flux scaling factor (k).

The TL counterpart of the MPAS-CO2 forward model represented by Eq. (7) can be symbolically expressed as the first130

derivative of the forward model:

∆xt = M(∆x0,∆k) (8)

where M( ) represents the MPAS-CO2 TL model, ∆x0 and ∆xt are the TL variable of CO2 mixing ratio at the initial and

forecast time, respectively, and ∆k is the TL variable of the flux scaling factor k. In essence, Eq. (8) shows that the TL model

computes the perturbation in the forecast time CO2 mixing ratio (∆xt), given the perturbation in the flux scaling factor (∆k)135

and/or perturbation in the initial time CO2 mixing ratio (∆x0).

Based on the source code of the forward model, we developed the TL code by differentiating each process relevant to CO2

flux and transport, including advection, vertical mixing by the YSU PBL scheme, convective transport by the Kain-Fritsch

scheme, and the CO2 emission driver that implements Eq. (6). Automatic differentiation tools, such as Tapenade (Hascoet and140

Pascual, 2013) and Tangent and Adjoint Model Compiler (Giering and Kaminski, 1998), can be used to assist TL and adjoint
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code generation. However, the code these tools generate typically contains redundancies and is difficult to read, particularly

for the adjoint code. To optimize the computation efficiency and facilitate future code upgrading, we manually developed the

TL and adjoint code for MPAS-CO2 with some minor assistance from Tapenade.

145

After the TL model is completed, a thorough examination of its correctness was undertaken. As indicated in Eq. (8), the TL

model can calculate the sensitivity of xt with respect to both x0 and k. The calculation of the sensitivity of xt with respect to

x0 involves the TL code of all the CO2 transport processes, including advection, PBL, and convective transport. In comparison,

the calculation of the sensitivity of xt with respect to the flux scaling factor k involves the TL code of the CO2 emission driver

in addition to the TL code of all the CO2 transport processes. Because the calculation of sensitivity to k includes the TL code150

of all the processes in the TL model, and because both the transport processes and emission driver are linear, the correctness

of the entire MPAS-CO2 TL model can be verified by checking whether the following equation is satisfied (Errico, 1997; Tian

and Zou, 2020):

Φ(α) =
∥M(x0,(1 +α)k)−M(x0,k) ∥

∥M(0, αk) ∥ = 1, (9)

where M() is the TL model, M() is the forward model and α is a scalar. The second item in the numerator of Eq. (9),155

M(x0,k), is a forward model run. The first item in the numerator, M(x0,(1+α)k) is an identical forward model run except

that its flux scaling factor at each surface cell is adjusted by multiplying 1+α. In the denominator, M(0, αk)) is a TL model run

with its perturbation in initial time CO2 mixing ratio set to zero (∆x0 = 0) and perturbation in flux scaling factor ∆k = αk,

which is the difference in the flux scaling factors between the two forward model runs.

160

If the TL model is correctly coded with regard to the forward model, Eq. (9) should be satisfied to the extent of machine

accuracy until α is too small that the result is affected by round-off errors and drifts away from unity. To verify using Eq.

(9), we ran a series of simulations using the forward model and newly developed tangent linear model with the scale factor α

ranging from 1.0× 103 to 1.0× 10−4 (Table 1). All the simulations start at 2018-10-01 00:00 UTC, run for 1 month, and end

at 2018-11-01 00:00 UTC. The meteorological initial condition is from the ERA5 reanalysis (Hoffmann et al., 2019) and the165

CO2 initial condition (x0) is from the Carbon Tracker (Jacobson et al., 2020) v2022 (CT2022) posterior CO2 mole fraction

at this time. Three-hourly CO2 fluxes for the biogenic, fire, fossil fuel, and oceanic components from the CT2022 posterior

are applied throughout the 1-month simulation period for each model run. Flux scaling factors of k = 1 were used in all our

simulations here, with 1 being a vector the same length as k with ones in every element. The model simulations are conducted

using the global variable-resolution (VR) mesh shown in Fig. 1. This VR mesh has a total of 15,898 cells, which range from170

120 km over most of the land regions to 480 km over oceans. Table 1 shows that the magnitudes of both the numerator and

the denominator in (9) decrease as α decreases. Moreover, the table also shows that the ratio remains close to unity until α

decreases to 1.0× 10−1, beyond which round-off errors lead to a deviation from unity. These results confirm that the MPAS-

CO2 TL model has been correctly developed with regard to the forward model. In the next section, we proceed to develop the

6
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MPAS-CO2 adjoint model.175

4 Development of the MPAS-CO2 adjoint model

An adjoint model is an essential component of a variational data assimilation system and is very useful for adjoint sensitivity

analysis. Symbolically, the MPAS-CO2 adjoint model can be expressed as:

(∆x̂0,∆k̂) = MT (∆x̂t), (10)180

where MT () is the MPAS-CO2 adjoint model, ∆k̂ is the adjoint variable of the flux scaling factor, and ∆x̂0 and ∆x̂t are the

adjoint variables of CO2 mixing ratio at the initial and forecast time, respectively. Eq. (10) demonstrates that starting with ∆x̂t

at the forecast time, the MPAS-CO2 adjoint model runs backward in time to the initial time, resulting in the adjoint variable of

CO2 mixing ratio at the initial time (∆x̂0), and the adjoint variable of the flux scaling factor (∆k̂).

185

Similar to its TL model counterpart, the development of the MPAS-CO2 adjoint model was carried out through manual

implementation to avoid redundancy and optimize computational efficiency. However, unlike the forward and TL models,

the adjoint model faces the challenge of accessing meteorological fields at every time step during its model integration. This

challenge arises due to the fact the adjoint model runs backward in time, making the meteorological fields unavailable. One

approach to this problem is saving meteorological fields in memory during the adjoint model’s forward sweep, enabling access-190

ing during the subsequent backward sweep (Guerrette and Henze, 2015; Zheng et al., 2018). However, since the MPAS-CO2

adjoint model is intended for long simulations, this approach becomes impractical due to the excessive memory it demands. As

an alternative strategy, we adopt an approach that combines both recalculation and storage of the meteorological fields. This

strategy effectively divides a long simulation into segments, and the forward and backward sweeps are carried out sequentially

for each segment, requiring internal memory only large enough to accommodate one segment’s worth of meteorological fields.195

This internal manipulation is handled seamlessly by the adjoint model, enabling it to run as long as needed without overbur-

dening memory resources.

The correctness of the newly developed MPAS-CO2 adjoint model can be verified using the following equation (Tian and

Zou, 2020):200

⟨∆x,M(0,∆k)⟩= ⟨MT (∆x),∆k⟩, (11)

where ⟨ ⟩ represents the inner product operator, ∆x is a perturbation of CO2 mixing ratio and ∆k is a perturbation of CO2

flux scaling factor. If the adjoint model is correctly coded with respect to the TL model, Eq. (11) should be satisfied for any

choice of ∆x and ∆k. M(0,∆k) on the LHS of the equation is the perturbation in forecast CO2 mixing ratio resulting from

7
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a TL model run whose perturbation in initial CO2 mixing ratio is set to zero and perturbation to flux scaling factor is set to205

∆k. The first item of the RHS, MT (∆x), represents the adjoint variable of flux scaling factor output from the adjoint model

integration from forecast time backward to the initial time. The TL and adjoint model runs on the two sides of Eq. (11) have

the same simulation time period, but the latter runs backward in time.

We conducted two sets of experiments using the TL and adjoint models following Eq. (11) to verify the correctness of the210

newly developed adjoint model. In the first set of experiments, we set ∆k = 10−11, and ∆x = M(0,∆k). The experiments

were carried out in two steps: First, the TL model was integrated 7 days from the initial time (2018-10-01 00:00 UTC) to

the end time (2018-10-08 00:00 UTC), with ∆k = 10−11, resulting in M(0,∆k) which is the perturbation in forecast time

CO2 mixing ratio; Second, the adjoint model is initialized at 2018-10-08 00:00 UTC with its adjoint variable for CO2 mixing

set to M(0,∆k). The adjoint model is then integrated backward in time for 7 days to 2018-10-01 00:00 UTC, resulting in215

MT (∆x). The LHS and RHS of Eq. (11) are then calculated using the above results (Table 2). The table shows that the agree-

ment between the LHS and RHS of Eq. (11) is about −5.15× 10−15. This experiment is repeated with the same configuration

but the simulation length is increased to 31 days, ending at 2018-11-01 00:00 UTC. As expected, the magnitude of both the

LHS and RHS increased, and they agree to about −2.55× 10−16. In the second set of the experiment, ∆k = 10−11 (same as

the first set of experiments), but ∆x =M14d(x0,k), which is the CO2 mixing ratio at the end of 14-day forward model run220

(2018-10-01 00:00 UTC to 2018-10-15 00:00 UTC). We note that this forward model run uses x0 from CT2022 posterior CO2

mole fraction, and k = 1, however, Eq. (9) should satisfy for any configurations and simulation period of the forward model.

The resulting LHS and RHS of Eq. (11) from the second set of experiments are about 2 orders of magnitude larger than their

counterpart of the first experiments. This is caused by the much larger ∆x of the second set of experiments. The LHS and RHS

agree to to about −3.42× 10−15 for the 7-day simulation and about 2.66× 10−15 for the 31-day simulation (Table 2).225

The results shown in Table 2 obtained from the experiments based on Eq. (11) confirm that the MPAS-CO2 adjoint model

has been correctly developed with regard to the TL model. As the TL model has already been confirmed correct with respect

to the forward model, it follows that both TL and adjoint models are correct with respect to the forward model of MPAS-CO2.

This validation ensures the reliability and integrity of the entire MPAS-CO2 system, including the forward, TL, and adjoint230

models, as described in this paper and Zheng et al. (2021). It allows MPAS-CO2 to be used as the basis of a variational assim-

ilation system for carbon flux estimation and as a platform for conducting sensitivity analyses in atmospheric carbon research.

Table 3 presents the computational cost of model simulations using the MPAS-CO2 system. Using the global 120-480 km

VR mesh (Fig. 1; 15898 cells), the 1-month forward model simulation completes in 20 minutes when using 128 processors.235

Both the TL and adjoint model simulations using the same configuration take approximately 10% longer, indicating that the

majority of the computation time is used for integrating the meteorological fields. Furthermore, we conducted another set of

1-month simulations using the models on a global quasi-uniform resolution (UR) mesh of about 120 km, consisting of a total

of 40,962 cells. Table 3 demonstrates that the simulations with the VR mesh reduce the computational cost by over 50% for all

8
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three models, primarily due to its substantially smaller number of cells. This reduction in computation cost, while preserving240

the high resolution over areas of interest, should prove advantageous when the models are applied in variational assimilation

problems, which typically require many iterations of forward and adjoint model runs.

5 Adjoint sensitivity analysis

In addition to forming a key component of variational assimilation systems (Baker et al., 2006; Zheng et al., 2018; Tian and245

Zou, 2021), adjoint models are powerful tools for sensitivity analysis (Errico and Vukicevic, 1992; Errico, 1997; Zou et al.,

1997; Tian and Zou, 2020). Studies focused on carbon flux estimation are often interested in exploring the sensitivity of at-

mospheric CO2 measurements to surface CO2 fluxes; these maps are commonly referred to as observation influence functions

or footprints (Cui et al., 2022). The computation of observation footprints using forward models requires a large number of

model runs, making it impractical, except at coarse horizontal resolutions. In contrast, adjoint models can calculate observation250

footprints much more efficiently. For point measurements, such as those from tower data, Lagrangian dispersion models offer

an efficient alternative for obtaining footprints (Lin et al., 2003; Stohl et al., 2005). For an example of this, see the publicly

available CO2 observation footprints from Carbon Tracker- Lagrange (CT-L) (Hu et al., 2019), which are generated using the

Lagrangian particle dispersion model STILT (Lin et al., 2003), driven by meteorology generated by the Weather Research

and Forecast (WRF) model (Skamarock et al., 2008). This approach involves releasing a certain number of particles from the255

observation location/height and tracing their backward transport in time. Note that CT-L is a regional modeling system that

only provides observation footprints within the latitude range 10o-80o N and longitude 0o-180o W for up to 10 days backward

in time.

In this section, we perform sensitivity analyses using the MPAS-CO2 adjoint model, which employs backward-in-time inte-260

gration to calculate two quantities: (1) the sensitivity of atmospheric CO2 to the model’s initial CO2 mixing ratio, and (2) the

sensitivity to the surface flux scaling factor. When a uniform time-invariant surface flux is used, the sensitivity to the surface

flux scaling factor calculated by the MPAS-CO2 adjoint model is the observation footprint. To facilitate comparison with CT-L

footprints, the MPAS-CO2 adjoint model simulations conducted in this section use uniform time-invariant CO2 surface fluxes

of 1.0 µmol/(m2 s) for all surface cells, including both land and ocean cells.265

First, we conduct MPAS-CO2 adjoint model simulations for in situ CO2 observations at two towers in the United States:

WKT, located at Moody, Texas (31.31o N, 97.33o W), and WGC, located at Walnut Grove, California (38.26o N, 121.49o W).

For each tower, the adjoint model is initialized at 00:00 UTC on March 31, 2018. We add an adjoint forcing of 1 ppm CO2

at that time to the model grid cell closest to the tower location and the intake height (475m at WKT and 483m at WGC). The270

forcing is turned off for subsequent time steps and the adjoint model is run backward in time for 30 days, ending at 00:00 UTC

on March 1, 2018. The resulting sensitivity of CO2 at the WKT tower to the model’s CO2 mixing ratio, which is 3-dimensional,

9
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is shown as a column average in the left panel of Fig. 2. The right panel of Fig. 2 shows the observation footprint (sensitivity

to the surface flux scaling factor) at the corresponding times. The figures show that the sensitivity to the initial CO2 is highest

and concentrated closest to the tower site at the time closest to the measurement: 5-days. With the increasing length of the275

backward-in-time integration, the sensitivity spreads over a larger area and its magnitude decreases. After 30 days, the sensitiv-

ity to the initial condition has propagated across most of the northern hemisphere. Figure 2 also indicates that the variation in

the sensitivity magnitude decreases with time. To examine this, we calculated the standard deviation (σ) of sensitivity for each

day of the 30-day period (Figure 3). The triangles in Fig. 3 show that the magnitude of the standard deviation of sensitivity to

the CO2 mixing ratio decreases rapidly with time for both towers. On the other hand, the sensitivity to the surface flux scaling280

factor (footprint) exhibits a different pattern from the sensitivity to the initial CO2. As shown in Fig. 2, the footprint spread

spatially but the near field to the tower maintains a much higher magnitude than the far fields. By the end of 30 days, the

footprint of WKT tower covers almost the entire northern hemisphere, with the area north and northwest of the tower within

the conterminous United States exhibiting a much higher magnitude than the more distant area. The circles in Fig. 3 indicate

that the standard deviation of the footprint increase with time, but the rate of increase diminishes substantially after about 10 to285

15 days. The finding suggests that extending the adjoint model integration further backward in time will still result in changes

to the footprint, but with a much-reduced change rate.

For comparison, in Figure 4 we plot the MPAS-CO2 adjoint model-calculated 10-day footprints in the CT-L geographic

domain. The figure reveals that the MPAS-CO2 adjoint model-calculated WKT tower footprint spans most of the western and290

northwestern United States, with the highest sensitivity in Texas, Missouri, Iowa, Kansas, and Nebraska. Additionally, the foot-

print extends to a substantial area over the northeastern Pacific Ocean. The spatial pattern of the CT-L calculated footprint (Fig.

4c) is similar to that from the MPAS-CO2 adjoint model, but it is visibly less continuous. Fig. 4 also shows that the MPAS-CO2

adjoint model-calculated footprint for the WGC tower covers northern California, southwestern Washington, and a portion of

the northeastern Pacific Ocean. The CT-L-calculated footprint exhibits a similar spatial pattern and magnitude. Overall, both295

the MPAS-CO2 adjoint model and CT-L provide valuable information on the sensitivity of atmospheric CO2 measurements to

the surface flux: similar spatial patterns although with some differences due to resolution and the Lagrangian/Eulerian frame-

work difference.

In the second set of experiments, we compare CT-L and MPAS-CO2 adjoint model footprints for a swath of OCO-2 XCO2300

measurements. The ground track of the OCO-2 orbit used in the experiments is indicated by the blue color line in Fig. 1. This

orbit crosses North America from the Caribbean Sea to Canada’s Northwest Territories in a northward direction between 18:31

UTC and 18:48 UTC on June 30, 2106. Since OCO-2 XCO2 represents the column average of atmospheric CO2, CT-L calcu-

lates XCO2 footprints at 14 discrete height levels, ranging from 50 to 14,000 meters above the ground. For each height level,

footprints are computed by placing a number of particles at that specific height. To ensure consistency with the CT-L approach,305

the MPAS-CO2 adjoint model is configured to apply the adjoint forcing at the corresponding vertical levels within the model.

This configuration allows for a direct comparison between the footprints calculated by the MPAS-CO2 adjoint model and the
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CT-L footprints.

In the top panel of Fig. 5, we present the footprints of a point located south of Jamaica in the Caribbean Sea (17.82oN,310

77.88oW) at 500 m above the surface. Both the MPAS-CO2 adjoint model and CT-L footprints largely extend eastward over

the Atlantic Ocean, indicating transport from the surface due to the influence of the easterly trade winds. Additionally, the

MPAS-CO2 adjoint model-calculated footprint includes a branch that crosses the equator and extends southeastward to the

southern hemisphere between 30oW and 40oW longitude. This feature is not shown in the CT-L footprint due to its limited-

area domain. In the lower panel of Fig. 5, we present the footprint of the same location but at 10,000 m above the surface. Both315

the MPAS-CO2 adjoint and CT-L footprints show a primarily counterclockwise extension, covering the Gulf of Mexico and

Texas. Moreover, there is a second segment extending westward from Texas toward the west coast. Upon closer examination,

we observe that the CT-L-calculated footprint has a higher magnitude than the MPAS-CO2 adjoint model over the Gulf of

Mexico, but a lower magnitude over the mid-Atlantic regions of the United States, including from Kentucky to the Carolinas.

The distinct patterns in both systems’ footprints at different vertical levels (500m and 10,000m) indicate significant differences320

in horizontal and vertical transport patterns.

Figure 6 shows the corresponding footprints for an OCO-2 XCO2 location in eastern Kentucky (36.8oN,82.9oW) for parti-

cles released at 2,000 and 4,500m above the ground, respectively. The footprint of 2,000m extends predominantly northward,

covering the Great Lakes region and part of the Canadian Shield. In comparison, the footprint for 4,500m is mostly directed325

to the west. Another notable difference is that the highest magnitude portion of the 2,000m footprint is in close proximity to

the point, while the 4,500m footprint is not in proximity to the point at all. These differences between the two height levels are

evident in both the MPAS-CO2 adjoint model and CT-L calculated footprints. In Fig. 7, we show the footprint of an OCO-2

sounding location on the southwest coast of Hudson Bay, Canada (56.96oN, 91.89oW) at 500m and 4,500m altitude. Both the

MPAS-CO2 adjoint and CT-L footprints for 500m are generally confined near to the sounding location, indicating that local330

surface fluxes have a significant influence on the atmospheric CO2 at 500m above the surface. In comparison, the footprint of

4,500m is located more than 2,000km northwestward, mostly covering Alaska; the particles move that far horizontally in the

time it takes them to advect and mix 4,500m in the vertical. These findings emphasize the significant impact of vertical mixing

on the spatial distribution of footprint at different altitudes, highlighting the unique patterns of horizontal and vertical transport

in each case.335

In additional MPAS-CO2 adjoint model runs, we quantitatively compare the footprints of the entire OCO-2 track at each of

the 14 height levels with the CT-L footprints. This comparison is conducted by performing a single MPAS-CO2 adjoint model

run to calculate the footprint at the end of the 10-day backward-in-time integration for each height level. We then compare these

resulting footprints with their CT-L counterparts. Figure 8 shows the comparison at 4 height levels: 500m, 2,000m, 5,500m, and340

10,000 m above the surface. The figure reveals that the footprints calculated by the two systems have similar spatial patterns

within the limited-area domain of CT-L. However, it is important to note that a substantial portion of the footprints extends
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beyond the CT-L domain. For instance, the footprints of 2,000m and 5,500m levels have significant coverage over Russian

Siberia, while the footprint of the 10,000m level extends from the eastern Pacific Ocean to northeastern and western China,

both of which are outside the CT-L model domain.345

In order to compare the footprints from the two systems quantitatively, we aggregated the footprints onto a 2o×3o (lat×lon)

grid within the area covered by the CT-L model domain for each of the 14 height levels. Figure 9 shows the comparison for each

of the 14. In the figure, the CT-L calculated footprints are on the X-axis, and MPAS-CO2 adjoint model calculated footprints

are on the Y-axis. The figure demonstrates that the agreement between the two systems is better for footprints at lower heights350

than at higher heights. Specifically, at lower heights ranging from 500m to 2,500m, the MPAS-CO2 adjoint model calculated

footprints tend to have a somewhat higher magnitude than CT-L. However, at higher heights from 4,500m to 14,000m, the foot-

prints calculated by CT-L tend to be of much higher magnitude compared to the MPAS-CO2 adjoint model. These differences

in magnitude between the two systems could be attributed to various factors, including differences in model configurations,

spatial resolution, and treatment of vertical mixing processes. Previous studies have shown that Lagrangian models, such as355

CT-L, can sometimes have different vertical mixing behavior compared to Eulerian models, especially at high altitudes (Karion

et al., 2019).

In a final experiment, we use the MPAS-CO2 adjoint model to examine the impact of different vertical distributions on

footprint calculation. Two adjoint model simulations are conducted for the OCO-2 orbit that crosses South America and North360

America between 17:36 UTC and 18:13 UTC on August 23, 2016 (the red color track in Fig. 1). Both simulations have the

same adjoint forcing of 1 ppm XCO2 added at 18:00 UTC on August 23, 2016, and running backward in time for 30 days.

The key difference between the two simulations lies in the vertical distributions of the adjoint forcing. For the first simulation,

we adopt profile 1, which is obtained by combining the XCO2 averaging kernel and pressure weight function (O’Dell et al.,

2018). In contrast, profile 2 prioritizes XCO2 information in the lower part of the troposphere (Figure 10). This experiment365

aims to highlight how these differences in vertical distribution impact the footprint calculation, leading to variations in flux

estimation using variational assimilation. The results of this experiment will provide valuable insights to the importance of

selecting appropriate vertical distribution when using the adjoint model for CO2 flux estimation.

The top two panels of Fig. 11 show the footprints resulting from MPAS-CO2 adjoint model simulations using the two370

distinct vertical distribution profiles for the adjoint forcing (Fig. 10). Although the two footprints may initially appear very

similar, substantial differences become evident as shown in the bottom panel in Fig. 11. Specifically, the footprint calculated

using Profile 1 exhibits lower magnitudes compared to that obtained using Profile 2 in most extratropical regions in both the

North Hemisphere and Southern Hemisphere. Conversely, in most of the tropics, the footprint calculated using Profile 1 shows

higher magnitudes than for Profile 2. Profile 2, which allocates more adjoint forcing to the lower atmosphere and less to the375

upper atmosphere, appears to be more sensitive to the stronger convective transport of surface CO2 flux in the tropics than in the

extratropics. These convective transport differences can account for the observed variations in the footprints between the two
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profiles. These findings underscore the critical importance of selecting an appropriate vertical distribution for the model-data

difference when using an adjoint model during variational assimilation.

6 Conclusions380

The MPAS-CO2 system consists of forward, TL, and adjoint models that are built upon the variable-resolution capability of

the compressible non-hydrostatic MPAS-A model (Skamarock et al., 2012). It promises to be a useful tool for carbon flux

inverse modeling at the global and regional scales. The forward model of MPAS-CO2 is documented by Zheng et al. (2021). In

this paper, we focus on the development of its tangent linear and adjoint models. Through rigorous testing, we have confirmed

the correctness and accuracy of the newly developed MPAS-CO2 TL and adjoint models. A key challenge in developing the385

adjoint model was efficiently accessing meteorological variables during the model’s backward-in-time integration. We have

successfully implemented a strategy that combines recalculation and storage of meteorological variables. This approach sig-

nificantly reduces the memory requirement, making the adjoint model feasible for long simulations, which are often necessary

for CO2 inverse modeling.

390

The results of the sensitivity analysis using the newly developed MPAS-CO2 adjoint model provide valuable insights for

designing CO2 data assimilation systems. The increasing homogeneity of the sensitivity to the initial atmosphere CO2 mixing

ratio with longer integration length highlights the importance of selecting an appropriate assimilation window length. The com-

parison of the CO2 observation footprints between the MPAS-CO2 adjoint model and the NOAA CT-L system demonstrates

good agreement, validating the accuracy of the adjoint model’s footprint calculations. The comparison of OCO-2 XCO2 foot-395

prints reveals differences in sensitivity between the two systems at different altitudes. MPAS-CO2 adjoint model-calculated

footprints tend to have higher magnitudes at low altitudes and lower magnitudes at high altitudes compared to CT-L. These

differences likely arise from variations in vertical transport between the two systems. Lastly, the sensitivity analysis using two

different vertical distribution profiles for adjoint forcing highlights the importance of correctly mapping model-data difference

in XCO2 to the transport model’s vertical levels.400

In addition to being a powerful tool for sensitivity analysis, the adjoint model plays a critical role in CO2 variational data

assimilation. Our future research efforts will focus on integrating the forward and adjoint models of MPAS-CO2 into such a

system. This integration has the potential to bridge a significant gap by establishing an online Eulerian transport model-based

global variational assimilation system for CO2 that targets high resolution in critical regions while at the same time avoiding405

the pitfalls associated with the lateral boundaries needed in regional-domain inversions.
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Code and data availability

The MPAS-CO2 TL and adjoint models v7.3 developed in this paper can be downloaded from the CERN-based Zenodo

archive at https://doi.org/10.5281/zenodo.8226620. This includes the model source code, instructions for compilation, and

example script for running models. Instructions for how to compile and run the models are provided in the package. Car-410

bonTracker CO2 flux and posterior mixing ratio data can be obtained from the NOAA website: https://www.esrl.noaa.gov/

gmd/ccgg/carbontracker/download.php. CT-L footprints can be obtained from the NOAA website: https://gml.noaa.gov/ccgg/

carbontracker-lagrange/
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Figure 1. An MPAS-CO2 global variable resolution mesh ranging from ∼120km over most of land regions to ∼480km over oceans.Also
shown in the figures are the ground tracks of two OCO-2 orbits, which are used for the adjoint sensitivity studies described in Section 5.
The blue-colored ground track crosses North America from the Caribbean Sea northward between 18:31 UTC and 18:48 UTC on June 30,
2016.The red-colored ground track crosses from South America to North America between 17:36 UTC and 18:13 UTC on August 23, 2016.
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Figure 2. The column average of sensitivity of CO2 at the WKT tower at 00:00 UTC on March 31 2018 to CO2 mixing ratio (units:
ppm/ppm) at 5, 10, 20, and 30 days backward in time (a)-(d). The WKT tower (31.3149oN, 97.3269oW) measurements used here are taken
457m above the ground level and labeled by the red color cross in the figures of the left column. Figures (e)-(h) are the sensitivity of CO2

at the tower at the same time to the surface CO2 flux scaling factor (footprint, units:ppm/µmol m−2 s−1) computed 5, 10, 20, and 30 days
backward-in-time, respectively.
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Figure 3. The variation of the standard deviation (σ) of sensitivity to the initial CO2 and the sensitivity to the flux scaling factor (footprint)
over time. The standard deviations were calculated from MPAS-CO2 adjoint model simulations starting on 2018 March 31 at 00:00 UTC,
running 30 days backward in time, and ending on 2018 March 1 at 00:00 UTC. The top panel (a) is for the WKT tower (457 magl) while the
bottom panel (b) is for the WGC tower. In each figure, the triangles represent the standard deviation of sensitivity to the CO2 mixing ratio
field (units: ppm/ppm), and the circles represent the standard deviation of footprint (units:ppm/µmol m−2 s−1).
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Figure 4. The 10-day backward in time CO2 measurement footprint (units:ppm/µmol m−2 s−1) given by two tall towers: WKT and WGC.
The figures on the top panel are the footprint of the WKT tower calculated using the MPAS-CO2 adjoint model (a) and CT-L (c). The figures
on the bottom panel are the footprint of the WGC tower calculated by the MPAS-CO2 adjoint model (b) and CT-L (d). The location of the
towers is marked by the black crosses in the figure on the right panel.
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Figure 5. Comparison of footprints calculated by MPAS-CO2 adjoint model and CT-L at a sounding location (red crosses, left panels) along
the OCO-2 ground track in Fig 1(blue color). The footprints are calculated at two different heights: 500m (top panel) and 10,000m (bottom
panel), and 10 days backward in time.
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Figure 6. Same as Figure 5, except for a different OCO-2 sounding location and heights (2,000m in the top panel and 4,500m in the bottom
panel).
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Figure 7. Same as Figure 5, except for a different OCO-2 sounding location and heights (500m in the top panel and 4,500m in the bottom
panel).
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Figure 8. The footprint of the OCO-2 ground track shown in Fig. 1 (with blue color) calculated by the MPAS-CO2 adjoint model (left
panel) and by CT-L (right panel). The footprints are calculated by placing the adjoint forcing (for the MPAS-CO2 adjoint model) or releasing
particles (for CT-L) at four different height levels above the ground: 500m, 2000m, 5500m, and 10000m. The footprints are computed for 10
days backward in time.
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Figure 9. Comparison of the OCO-2 groundtrack footprints from the MPAS-CO2 adjoint model and CT-L after 10 days integration backward-
in-time. For each of 14 height levels, the values of the footprints (units:ppm/µmol m−2 s−1 ) are extracted as the average value of 2◦x3◦

boxes within the range of the CT-L spatial domain (10-80◦N, 180-10◦W).
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Figure 10. Two different profiles for vertically distributing a unit (ppm) of XCO2 . Profile 1 is determined by OCO-2 XCO2 averaging kernel
and pressure weight functions. Profile 2 is based on a redistribution of Profile 1 that gives more weight towards CO2 in the lower troposphere
than in the upper part of the atmospheric column. The circles of profiles are on the twenty pressure levels of OCO-2 XCO2 pressure weight
function. Both profiles integrate to unity.
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Figure 11. MPAS-CO2 adjoint model-calculated footprints (units:ppm/µmol m−2 s−1) obtained after 30 days of backward-in-time integra-
tion starting on August 23, 2016 at 18:00 UTC (the time of the OCO-2 measurement). The top figure is obtained when using Profile 1 (Fig.
10) to vertically distribute 1 ppm of adjoint forcing. The middle figure is the footprint using Profile 2. The bottom figure is the difference in
footprint between the two profiles.
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Table 1. Results of the correctness check for the newly-developed MPAS-CO2 tangent linear model. The results are from 1-month integration
(from 2018-10-01 00:00 UTC to 2018-11-01 00:00 UTC) of the forward and tangent linear models using the 120-480 km global variable-
resolution mesh (Fig. 1). The terms in the table refer to Eq. (9).

α ∥M(x0,(1 +α)k)−M(x0,k) ∥ ∥M(0,αk) ∥ ∥M(x0,(1 +α)k)−M(x0,k) ∥ / ∥M(0,αk) ∥
1.0× 103 2.07316571683768× 101 2.07316571683768× 101 1.0
1.0× 102 2.07316571683768× 10−1 2.07316571683768× 10−1 1.0
1.0× 101 2.07316571683768× 10−3 2.07316571683768× 10−3 1.0
1.0 2.07316571683769× 10−5 2.07316571683768× 10−5 1.0
1.0× 10−1 2.07316571683765× 10−7 2.07316571683768× 10−7 0.99999999999998
1.0× 10−2 2.07316571683799× 10−9 2.07316571683768× 10−9 1.00000000000015
1.0× 10−3 2.07316571683735× 10−11 2.07316571683768× 10−11 0.99999999999984
1.0× 10−4 2.07316571692815× 10−13 2.07316571683768× 10−13 1.00000000004364

30

https://doi.org/10.5194/gmd-2023-169
Preprint. Discussion started: 29 September 2023
c© Author(s) 2023. CC BY 4.0 License.



Table 2. Results of the correctness check for the newly-developed adjoint model of MPAS-CO2. All simulations are of the 120-480km
variable-resolution mesh (Fig. 1). The LHS and RHS in the table refer to Eq. (11).

Integration length LHS RHS (LHS-RHS)/LHS
∆k = 10−11 and ∆x = M(0,∆k)

7-day 1.436630106778291× 10−7 1.436630106778298× 10−7 −5.158974640379662× 10−15

31-day 2.073165716837682× 10−7 2.073165716837683× 10−7 −2.553561385538706× 10−16

∆k = 10−11 and ∆x =M14d(x0,1)
7-day 2.273936055720336× 10−5 2.273936055720344× 10−5 −3.421966688503031× 10−15

31-day 7.640482494092126× 10−5 7.640482494092106× 10−5 2.660668452525361× 10−15
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Table 3. The computational costs for a 30-day simulation of MPAS-CO2 at ∼120km quasi-uniform resolution and at a variable resolution
ranging from ∼120 km to ∼480 km. Computational costs are shown for the forward, tangent linear, and adjoint models. All simulations are
conducted using 128 AMD EPYC 7H12 2.595 GHz processors running in parallel.

Model Resolution Cost Time step
(km) (min) (second)

Forward 120 45 720
120-480 20 720

Tangent linear 120 48 720
120-480 22 720

Adjoint 120 48 720
120-480 22 720
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